Fine regularity of Lévy processes and linear (multi)fractional stable motion

نویسنده

  • Paul Balança
چکیده

In this work, we investigate the fine regularity of Lévy processes using the 2-microlocal formalism. This framework allows us to refine the multifractal spectrum determined by Jaffard and, in addition, study the oscillating singularities of Lévy processes. The fractal structure of the latter is proved to be more complex than the classic multifractal spectrum and is determined in the case of alpha-stable processes. As a consequence of these fine results and the properties of the 2-microlocal frontier, we are also able to completely characterise the multifractal nature of the linear fractional stable motion (extension of fractional Brownian motion to α-stable measures) in the case of continuous and unbounded sample paths as well. The regularity of its multifractional extension is also presented, indirectly providing an example of a stochastic process with a non-homogeneous and random multifractal spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A construction of processes with one-dimensional martingale marginals, associated with a Lévy process, via its Lévy sheet

Abstract We give some adequate extension, in the framework of a general Lévy process, of our previous construction of processes with one-dimensional martingale marginals, done originally in the set-up of Brownian motion. The Lévy process framework allows us to streamline our previous arguments, as well as to reach a larger class of such processes, even in the Brownian case. We give some illustr...

متن کامل

A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations

Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...

متن کامل

Statistical aspects of the fractional stochastic calculus

We apply the techniques of stochastic integration with respect to the fractional Brownian motion and the theory of regularity and supremum estimation for stochastic processes to study the maximum likelihood estimator (MLE) for the drift parameter of stochastic processes satisfying stochastic equations driven by fractional Brownian motion with any level of Holder-regularity (any Hurst parameter...

متن کامل

Se p 20 06 Statistical Aspects of the Fractional Stochastic Calculus ∗

We apply the techniques of stochastic integration with respect to the fractional Brownian motion and the theory of regularity and supremum estimation for stochastic processes to study the maximum likelihood estimator (MLE) for the drift parameter of stochastic processes satisfying stochastic equations driven by fractional Brownian motion with any level of Hölder-regularity (any Hurst parameter)...

متن کامل

Lévy-Kolmogorov scaling of turbulence

The Kolmogorov scaling law of turbulences has been considered the most important theoretical breakthrough in the last century. It is an essential approach to analyze turbulence data present in meteorological, physical, chemical, biological and mechanical phenomena. One of its very fundamental assumptions is that turbulence is a stochastic Gaussian process in small scales. However, experiment da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014